
  
Abstract—The goal of this work is to research the mathematical 

model of the laminar flow of viscous incompressible fluid in the gap 
between the static outer cone (stator) and the rotating inner cylinder 
(rotor). This mathematical model is based on the Navier-Stokes and 
the continuity equations. Numerical solution is based on the finite 
volume approach. The results are compared with particular results 
calculated by other authors and with analytical solutions for 
asymptotic cases. 
 

Keywords—Cone-cylinder gap, finite volume approach, 
incompressible fluid, viscosity. 

I. INTRODUCTION 
ATHEMATICAL modeling of enforced and shear flows of 
viscous fluids in gaps of various geometry is a topical 

question in hydrodynamics. Among examples of such flows 
are flows in noncontact seals and journal bearings which are 
widely used in mechanical engineering, metallurgical and 
rocket industry. It is widely known that there are many life-
time and reliability requirements for seals and bearings [1], 
[2]. 

In this article we research mathematical and simulation 
models of the three – dimensional enforced and shear flow of 
viscous incompressible fluid in the gap between the steady 
state cone and the rotating eccentric cylinder. The main 
equations in this mathematical model are the Navier – Stokes 
equation and the continuity equation. Its numerical solution 
has some complications such as the considerable difference in 
terms of the flow region, curvilinear boundary of the flow 
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region and nonlinear terms of the Navier – Stokes equation 
because of the inner cylinder high rotational velocity and the 
tapered flow canal. 

II. MODELING 
The flow of the viscous incompressible Newtonian fluid in 

the confusor is under investigation. The flow region is formed 
by a stationary truncated cone (stator) and a rotating cylinder 
(rotor), which are shown in Figure 1. The Cone has radii 1R  
and 2R respectively. The Cylinder with radius r is off-centered 
in cone and is rotating at a constant angular velocity ω . Under 
pressure 1P  the fluid flows from one end towards the channel 
shrinkage and escapes from the other end under pressure 0P . 

 
Fig. 1 geometry of the channel 

The fluid is assumed to fill up the whole channel, the flow is 
laminar. The temperature is assumed as constant. 

A. Mathematical model 
The Navier-Stokes equation and the continuity equation are 

the fundamental equations which describe the flow process [4], 
[6]: 
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where fρ  is a density of fluid, V


 is a velocity vector, P∇  is 

a gradient of the pressure, σD  is a stress deviator, V


⋅∇  is a 
velocity divergence. 

The stress deviator is determined by the Newton's 
generalized hypothesis: 
 

ξσ µ= DD 2 , (2) 
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where µ  is the coefficient of the dynamic viscosity. 
For the incompressible medium: 

( )∇⊗+⊗∇== ξξ VVDT


2
1 . (3) 

Due to the nondimensionalization by means of characteristic 
quantities, system (1) can be rearranged as follows: 
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respectively. 
The equations of the channel boundaries may be shown 

as follows: 
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System (4) can be solved with boundary conditions 
simultaneously. The boundary conditions for the velocity 
components can be presented as follows: 
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For pressure function P̂  on the ends of canal: 
10 =ϕρ ),,ˆ(P̂ , 01 =ϕρ ),,ˆ(P̂ . (6) 

Because the fluid flow canal is closed form the tangential 
coordinate direction the periodical conditions can be described 
as follows: 

)ẑ,,ˆ(F̂)ẑ,,ˆ(F̂ ii πρ=ρ 20 , 
ϕ∂

πρ∂
=

ϕ∂
ρ∂ )ẑ,,ˆ(F̂)ẑ,,ˆ(F̂ ii 20 . (7) 

B. Analyses of model 
As was said before, the flows in noncontact seals and 

journal bearings are investigated, so the flow thickness is very 
small. The set of main parameters and theirs order of 
magnitudes are presented in table I. 
I the main parameters order of magnitudes 

Parameter Lower level Upper level 
r, m 10-2 10-1 

h01, m 10-5 10-4 

β 0 10-1 

L, m 10-2 10-1 

n, rpm 101 105 

ΔP, Pa 105 107 
ν, m2/s 10-6 10-3 

μ, Pa·s 10-5 100 

ρf, kg/m3 100 103 
Using order-of-magnitude analysis it is easy to determining 

which terms in the equations are very small relative to the 
other terms [1], [4], [7], [8]. The values of the terms of 
equations (4) are presented in table II, the geometry parameter 

δ  coefficient domain is 410−  to 110− . In order to δ 
coefficient two cases available, firstly, if the conicity 
parameter β has the same magnitude with the relative gap η, 
and secondly, if the conicity parameter β exceeds the relative 
gap η by one or more orders of magnitude. Also the Euler 
number and the Reynolds number orders of magnitude are 
considered in follow conclusions: 

- if the conicity parameter β is less than 310− and the Reynolds 

number is less than 010 , then the velocity radial component, 
the inertial term and the velocity components derivatives in the 
tangential and axes directions are negligible; 
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- if the Reynolds number is more than 010 , then the inertial 
terms and the viscosity terms has the same magnitude, and if 

the conicity parameter β is more or equal to 310− , all the 
velocity components has significant values. 

II the equation (4) terms order of magnitudes 
The Navier-Stokes equation 

Inertial terms 
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According to the order-of-magnitude analysis, widely used 
assumptions of hydrodynamic theory of lubrication [4], [7] are 

acceptable if the conicity parameter β is less than 310− , and 
that is the flow between two cylinders actually. In this study it 
is necessary to consider the Navier-Stokes equation in its 
complete form. 

Thus, the mathematical model of the researched process has 
a look (4)-(7) and consists of four nonlinear partial differential 
equations with four unknown functions. 

III. NUMERICAL CALCULATIONS 
Numerical calculations of equations (4)-(7) are based on the 

finite volume method (F.V.M.). By means of the F.V.M. it is 
possible to get an adequate solution even for a crude mesh, 
because of guaranteed fulfilling of the fundamental laws of 
conservation [3], [8]. 

Equations (4) in tensor form look as follows: 
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According to the flow region geometry the element size by 
Oρ direction is variable and depends on the Oφ coordinate. 
The element sizes measured with the Oφ and Oz coordinates 
are constant. See fig. 2 as the discretization principle 
visualization in case of the coaxial flow region. 

 

 

Fig. 2 Flow region discretization 
According to approach [3], [9] the following operation is 

the volume integration of equations (8) in each finite volume 
(FV). Using the Ostrogradski formula it is possible to decrease 
the digit of the derivatives of the velocity vector: 
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where in


 is a unit normal vector on the respectively surface of 
FV. 

When we calculate surface integrals on each FV surface 
(fig. 2) and use the mean-value theorem, system (9) turns to: 
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P̂ẑˆEuV̂âV̂â
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System (10) is a discrete analogue of (8), and some of its 

coefficients include unknown functions discrete solution. To 
solution of system (10) may be found by means of the iteration 
procedure of calculating the sum of the unknown function of 
the last iteration and some increment value: 11 ++=+ S

FhSFSF . 
The results of the zero iteration can be taken as the solution 

of some asymptotic problem. The increment values matrix 
equation looks like: 
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where VA  – coefficients before increments of velocity 
components in the Navier-Stokes equation in all nodes of 
discrete flow region, PA – coefficients before increments of 
pressure in the Navier-Stokes equation,  VB  – coefficients 
before increments of velocity components in the continuity 
equation. 

Matrix (11) includes zeroes block because of the continuity 
equation, so this matrix determinant approaches zero and its 
inversion is difficult to reach. As the result, the system of these 
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equations may be solved as follows: find the vector of velocity 
increments in the first equation of (11) and set it in the second 
equation (11). Hereby we can, in the first place, find pressure 
increments and then - velocity components increment. 

IV. DISCUSSION 
Further you can see some simulated results for the viscous 

incompressible fluid enforced and shear flow in the eccentric 
gap between the outer cone and the inner cylinder with input 
data presented in table III. 

 
III input data definition 
Pressure drop ΔP 

(Pa) 
Frequency n 

(rpm) Radius r (m) 

3.5×105 400 0.1 

Gap h01 (m) Length L (m) Eccentricity e 
(m) 

2×10-4 0.1 0.2h01 

Conicity β Density ρf (kg/m3) Viscosity μ 
(Pa·s) 

1.0×10-3 894.5 0.62 
 
The field of velocity axial component through lengthwise 

and through thickness both in the region of the maximal gap is 
presented in fig. 4. As we can see on figure 4 the maximum 
velocity value is reached on the lip of the channel. 

 
Fig. 4 field of the velocity axial component 

 
Under constrains of the axial pressure difference and the inner 

cylinder rotation movement pressure in the axial direction has is 
nonlinear with extremum point as shown in figure 5(a). Also, in 
figure 5b you can see the pressure appearance in the tangential 
direction with the maximum point in the thinnest gap region, 
which defines the bearing capacity of lubricating layer. 

 
Fig.5 pressure function in the axial (a) and tangential (b) 

direction appearance 
 

Reasoning from simulation results it is established that the 
eccentricity growth leads to nonlinear leakage growth. The 
conicity parameter growth in order of fixed gap on inlet of the 
channel leads to leakage drop. 

Also, for the case of the enforced flow in the small nonzero 
conicity and the zero eccentricity region simulation the results 
were compared with the approximate solution of G. Nikitin 
[10], [11]. The result of this comparison is about 1% error in 1 
degree region conicity, however, the error increases as the 
apex angle of the cone increase. 

 
Fig. 6 leakage and conicity and eccentricity 

 
For the case of coaxial and zero conicity flow region the 

results were compared with a well-known analytical solution 
and with other results simulated by the finite element method 
and the finite difference method specialized programs. 
Obviously, the FV method has smallest percentage of error 
and adequate results even on a crude mesh. 

Thus the present mathematical model of three dimensional 
fluid flow was observed. On the basis of order-of-magnitude 
analysis the availability limits of widely used assumptions of 
hydrodynamic theory of lubrication [8] was determined: if the 
value of Reynolds number is more than 100 the inertial terms 
and the viscosity terms orders of magnitude are considered, 
plus if the conicity parameter β is more or equal to 10-3 all the 
velocity components has significant values which are 
depended on all three coordinates. 

The simulation model is based on the finite volume 
approach. It was demonstrated that the finite volume method 
has smallest percentage of error and adequate results even on a 
crude mesh. 

The adequacy of simulation model was confirmed in order 
of compare the simulation results with the results the particular 
results calculated by other authors and with analytical 
solutions for asymptotic cases. 
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